Leadership & People
Research insight
July 15, 2021

Enhancing optimization planning models for health human resources management with foresight

Abstract


Achieving a balanced healthcare workforce requires health planners to adjust the supply of health human resources (HHR). Mathematical programming models have been widely used to assist such planning, but the way uncertainty is usually considered in these models entails methodological and practical issues and often disregards radical yet plausible changes to the future. This study proposes a new socio-technical methodology to factor in uncertainty over the future within mathematical programming modelling. The methodological approach makes use of foresight and scenario planning concepts to build tailor-made scenarios and scenario fit input parameters, which are then used within mathematical programming models. Health stakeholders and experts are engaged in the scenario building process. Causal map modelling and morphological analysis are adopted to digest stakeholders and experts’ information about the future and give origin to contrasting and meaningful scenarios describing plausible future. These scenarios are then adjusted and validated by stakeholders and experts, who then elicit their best quantitative estimates for coherent combinations of input parameters for the mathematical programming model under each scenario. These sets of parameters for each scenario are then fed to the mathematical programming model to obtain optimal solutions that can be interpreted in light of the meaning of the scenario. The proposed methodology has been applied to a case study involving HHR planning in Portugal, but its scope far extends HHR planning, being especially suited for addressing strategic and policy planning problems that are sensitive to input parameters.

Highlights


• We develop a comprehensive methodology that addresses uncertainty in mathematical programming models through foresight and scenario-building.

• This methodology is socio-technical, being especially suited for strategic and policy problems.

• We illustrate this methodology by applying it to the planning of Human Health Resources in Portugal.

• The main outputs of the methodology are then used to model uncertain parameters in a MILP optimization model that sets optimal medical vacancies.

• We show how this methodology is capable of capturing different sensitivities from relevant stakeholders and experts, going far beyond traditional approaches such as robust or stochastic programming.

Read the research paper here

António Alvarenga

António Alvarenga

Adjunct Associate Professor, Nova SBE

Website
8. Decent work and economic growth
3. Good health and well-being
Leadership & People
Interview
SDG
17

Purpose takeover: João Macedo

Big wave surfer. Owner of a surf school in Praia Grande, Sintra. Environmental advocate. João believes that "our connection to fear, or the fact that we have to face our fears, gives us a doorway into growth."

Learn more
Leadership & People
Research insight
SDG
16

Economy of Francesco (EoF)

The Economy of Francesco (EoF) is a global gathering of economists, researchers in economic models and change makers designed to present the world with distinct ways of thinking about the foundations and impact of current economic models

Learn more
Leadership & People
Research insight
SDG
8

Empowering to Reduce Intentions to Resist Future Change: Organization-Based Self-esteem as a Boundary Condition

Nova SBE's Professor Pedro Neves co-authored with Daniela Pires from BNP Paribas, and Sandra Costa from University of Liverpool Management School, a research published on British Journal of Management.

Learn more